
Statistics Review Part 3

Hypothesis Tests, 
Regression



The Importance of Sampling 
Distributions 

• Why all the fuss about sampling distributions?
– Because they are fundamental to hypothesis testing.

• Remember that our goal is to learn about the population 
distribution.
– In practice, we are interested in things like the population mean, 

population variance, some population conditional mean, etc. population variance, some population conditional mean, etc. 
– We estimate these quantities in a random sample taken from the 

population.
– This is done with sample estimators like the sample mean, the sample 

variance, or some sample conditional mean.
• Knowing the sampling distribution of our sample estimator 

(e.g., the sampling distribution of the sample mean), gives us a 
way to assess whether particular values of population 
quantities (e.g., the population mean) are likely or unlikely.

• E.g., suppose we calculate a sample mean of 5. If the true 
population mean is 6, is 5 a “likely” or “unlikely” occurrence?



Hypothesis Testing

• We use hypothesis tests to evaluate claims like:
– the population mean is 5
– the population variance is 16
– some population conditional mean is 3

• When we know the sampling distribution of a sample • When we know the sampling distribution of a sample 
statistic, we can evaluate whether its observed value in 
the sample is “likely” when the above claim is true.

• We formalize this with two hypotheses.
• For now, we’ll focus on the case of hypotheses about 

the population mean, but we can generalize the 
approach to any population quantity.



Null and alternative hypotheses

• Suppose we’re interested in evaluating a specific claim about 
the population mean. For instance:
– “the population mean is 5”
– “the population mean is positive”

• We call the claim that we want to evaluate the null 
hypothesis, and denote it 

• We call the claim that we want to evaluate the null 
hypothesis, and denote it H0.
– H0 : µ = 5
– H0 : µ > 0

• We compare the null hypothesis to the alternative hypothesis, 
which holds when the null is false.  We will denote it H1.
– H1 : µ ≠ 5  (a “two-sided” alternative hypothesis)
– H1 : µ ≤ 0  (a “one-sided” alternative hypothesis)



How tests about the population 
mean work

• Step 1: Specify the null and alternative hypotheses.
• Step 2a: Compute the sample mean and variance
• Step 2b: Use the estimates to construct a new statistic, called a 

test statistic, that has a known sampling distribution when 
the null hypothesis is true (“under the null”)
– the sampling distribution of the test statistic depends on the – the sampling distribution of the test statistic depends on the 

sampling distribution of the sample mean and variance
• Step 3: Evaluate whether the calculated value of the test 

statistic is “likely” when the null hypothesis is true.  
– We reject the null hypothesis if the value of the test statistic  is 

“unlikely” 
– We do not reject the null hypothesis if the value of the test 

statistic is “likely” 
– (Note: thanks to Popper, we never “accept” the null hypothesis)



Example: the t-test

• Suppose we have a random sample of n observations from a 
N(µ,σ2) distribution.

• Suppose we’re interested in testing the null hypothesis:
H0 : µ = µ0

against the alternative hypothesis:against the alternative hypothesis:
H1 : µ ≠ µ0

• A natural place to start is by estimating the sample mean,

• We know that if the null hypothesis is true, then the 
sampling distribution of      is normal with mean µ0 and 
variance σ2/n.
– We say:     ~ N(µ0,σ2/n) under the null

– (draw a picture)
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Example: the t-test (continued)

• Because      ~ N(µ0,σ2/n) under the null, we know that

(recall we can transform any normally distributed RV to have a standard normal 
distribution by subtracting off its mean and dividing by its standard deviation)
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distribution by subtracting off its mean and dividing by its standard deviation)

• If we knew σ2, we could compute Z, and this would be our test 
statistic:
– If Z is “far” from zero, it is unlikely that the null hypothesis is true, and we 

would reject it.
– If Z is “close” to zero, it is likely that the null hypothesis true, and we would 

not reject it.
– Why Z? Because we can look up its critical values in a table.

• Problems with this approach: 
– we don’t know σ2

– how do we quantify “close” and “far”?



Example: the t-test (continued)

• Since we don’t know σ2, why not estimate it? We know that 
the sample variance s2 is an unbiased estimator of σ2.

• Unfortunately,

• Some facts about sampling from a N(µ,σ2): 

( ) null under theon distributi 1,0 a have  does 
/

0 N
ns

X
Q not

µ−=

• Some facts about sampling from a N(µ,σ2): 
– Fact 1: (n – 1)s2/ σ2 ~ χ2

n-1

– Fact 2: s2 is independent of 
• We know already that if Z ~ N(0,1) and W ~ χ2

v and Z and W
are independent, then

• We can put all this together to compute a test statistic that 
has a t sampling distribution with n-1 degrees of freedom.
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Example: the t-test (concluded)

• Putting together the things we know, under the null :

• This is a bit of a mess, and it still involves an unknown 
quantity (σ2). But we can simplify it with a bit of algebra:
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quantity (σ2). But we can simplify it with a bit of algebra:

• Notice that this test statistic has two crucial properties: 
– it doesn’t contain any unknowns (so we can compute it)
– we know its sampling distribution (so we can look in a table and 

see if a particular value is “likely” or “unlikely” under the null)
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This is how ALL hypothesis testing 
works

1. We form the null and alternative hypotheses that we 
care about.

2. Then we use the sample data to construct a test 
statistic that has a known sampling distribution when 
the null hypothesis is true.the null hypothesis is true.

3. Then we decide whether or not to reject the null on 
the basis of whether the value of the test statistic that 
we observe is “likely” or “unlikely” under the null 
hypothesis.

• The right way to think about hypothesis tests:
– A hypothesis test is a rule for using the data to decide 

whether or not to reject the null hypothesis.



A note about Normality
• When we derived the sampling distribution for our t statistic, we relied on some 

facts that are only true when sampling from a normal distribution.
– This gives us a normal sampling distribution for the sample mean under the null, 

independence of the sample mean and variance, and the Chi-square result for s2.
• What do we do if we’re not sampling from a normal distribution? (the usual case)

– Usually, we rely on an asymptotic approximation.
• As the sample size gets “big” (technically, as n→∞), then s2 gets very close to σ2 

(it’s consistent).  Thus our T statistic gets very close to our Z statistic:(it’s consistent).  Thus our T statistic gets very close to our Z statistic:

• Furthermore, we know from the central limit theorem that as n→∞, under the null 
hypothesis the sampling distribution of Z is approximately N(0,1)
NO MATTER WHAT THE POPULATION DISTRIBUTION IS!

• So if our sample is “big enough” (how big?) we can compute the T statistic as 
usual, and use values from the standard normal distribution to decide whether a 
specific value is “likely” or “unlikely” under the null hypothesis.
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How do we know if a particular 
value of the test statistic is “likely”?

• When we know the sampling distribution of the test statistic, 
we know the probability that the value of the test statistic will 
fall in a given interval when the null hypothesis is true. 
– Just the area under the pdf of the test statistic’s sampling distribution.
– If T is our test statistic, for any α we can find L,U such that 

Pr[L ≤ T ≤ U] = 1 –α when H0 is true

• So we can define a range of “acceptable” values of the test • So we can define a range of “acceptable” values of the test 
statistic.
– e.g., we can define an interval [L,U] such that if the null hypothesis is 

true, the test statistic falls in the interval with probability 0.95 (α=0.05)
– that is, if the null is true and we draw 100 random samples, the test statistic 

will fall in this interval about 95 times.
– if we observe a value of the test statistic outside this interval, we know it is 

“unlikely” that the null is true (e.g., it would only happen in 5% of random 
samples) and we can therefore comfortably reject the null.

• We call L and U critical values at the 100α% significance 
level, and we can look them up in a table.



Making mistakes: Type I and Type 
II errors

• When testing a hypothesis, there’s always the possibility that 
we make a mistake.  

• There are two kinds of mistakes:
– Type I error: we erroneously reject the null when it’s true.
– Type II error: we fail to reject the null when it’s false

• We call the probability of making a Type I error the • We call the probability of making a Type I error the 
significance level of the test, and denote it α.

• We use β to denote the probability of making a Type II error.
– We call 1 –β the power of a test. It is the probability that we correctly 

reject the null when it is false.

• We usually choose a significance level α that we’re 
comfortable with (0.05 is most common), and look for a 
powerful test (small β)

• There’s a tradeoff: as α gets smaller, β must get bigger.
• (draw a picture)



An example

• Suppose you survey 121 randomly selected Canadians about the number of times 
they went to the movies last year.  

• Using the survey data, you calculate 
• You want to test the hypothesis that the population mean of movie attendance is 9:

H0 : µ = 9 H1 : µ ≠ 9 
• You figure movie attendance is probably normally distributed in the population, 

and construct the T statistic:

75   ,5.7 2 == sX

and construct the T statistic:

• You know that T ~ t120 if H0 is true.  In a table of critical values for the t120
distribution, you find that the critical value at the 10% level of significance (α = 
0.1) is 1.658; at the 5% level of significance (α = 0.05) the critical value is 1.980.

• This means that if H0 is true,
Pr[-1.658 ≤ T ≤ 1.658] = 0.90
Pr[-1.980 ≤ T ≤ 1.980] = 0.95

• Therefore t = -1.90526 is quite unlikely.  You would reject H0 at the 10% level of 
significance, but would not reject it at the 5% level of significance.
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p-values
• There’s another (related) way to decide whether or not to reject the null 

hypothesis.
• Suppose we construct a test statistic called W that has a known sampling 

distribution when H0 is true.  Suppose that in our sample, the value we 
compute for the test statistic is w.

• We can ask “what is the probability of observing a value of the statistic W
as big as w when the null hypothesis is true?” i.e.,as big as w when the null hypothesis is true?” i.e.,
– Pr[− w ≤ W ≤ w] = 1 − p*  (for a two-sided alternative)
– Pr[W ≤ w] = 1 − p* (for a one-sided alternative)

• The probability p* is called a p-value.  It is a tail probability of the 
sampling distribution of W. It is the probability of observing a value of W
that is more extreme (unusual) than w.

• It is also the probability of making a type I error if we reject the null.
• If the p-value is “small” (say ≤ 0.05) we can confidently reject H0.
• Computers routinely report p-values for common hypothesis tests, so you 

can save yourself some time by looking at the p-value rather than looking 
up critical values in a table.

• The p-value for the example above is between 5% and 10%



Interval Estimation

• We’re done talking about hypothesis testing for now – but it 
will come up again soon in the context of linear regression.

• We talked earlier about estimators – statistics that we use to 
estimate a population quantity.

• The examples we saw (the sample mean, sample variance, 
sample covariance, etc.) are all called point estimatorssample covariance, etc.) are all called point estimators
because they give us a single value for the population quantity.

• An alternative to a point estimator is an interval estimator.
• This is an interval that contains a population quantity with a 

known probability.
• An interval estimator of a population quantity Q takes the form 

[L,U], where L and U are functions of the data (they’re 
statistics).

• We use the interval estimator [L,U] to make statements like:
Pr[L ≤ Q ≤ U] = 1- α (look familiar yet?)



Example: Confidence Interval for 
the Population Mean

• A 95% confidence interval for the population mean µ is an 
interval [L,U] such that:

Pr[L ≤ µ ≤ U] = 0.95
• How do we find the interval [L,U] such that this is true?
• An illustrative (but impossible) way:• An illustrative (but impossible) way:

1. Pick a random value µ1 and construct the T statistic to test 
H0 : µ = µ1 vs.  H1 : µ ≠ µ1 .

2. If we reject H0, then µ1 is not in the interval. If we do not reject 
H0, then µ1 is in the interval.

3. Pick another value µ2 and repeat.
4. Do this for all possible values of µ (this is why it’s impossible).

• Thankfully, there’s an easier way.



The 95% confidence interval for µ

• The easier way is to make use of the sampling distribution of 
our T statistic. We know that when sampling from the normal 
distribution,
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• So we can always look up the critical value tn-1,α/2 such that:
Pr[- tn-1,α/2 ≤ T ≤ tn-1,α/2 ] = 1 –α

• For a 95% confidence interval, we have
Pr[- tn-1,0.025 ≤ T ≤ tn-1,0.025] = 0.95

• Now we just plug in the formula for our T statistic, and 
rearrange things as necessary (next slide)



Confidence Interval Algebra
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The Last Word on Confidence 
Intervals (for now)

• So now we know how to build a 95% confidence interval for µ
when sampling from the normal distribution.

• It’s easy to generalize this to 90% or 99% etc. confidence intervals 
– just change the critical value you use.

• When we’re not comfortable assuming that we’re sampling from 
the normal distribution, we can replace critical values from the tthe normal distribution, we can replace critical values from the t
distribution with critical values from the standard normal 
distribution if the sample is “big enough”

• We can build similar intervals for other population quantities – the 
idea is always the same.  We just need a sample quantity (usually a 
test statistic) whose sampling distribution we know & we can use it 
to build the interval.

• Typically, a confidence interval for a population quantity Q looks 
like 

[L,U] = [q - something, q + something] 
where q is a point estimator of Q, and somethingdepends on the 
variance of the sampling distribution of q.



Moving on

• To this point we’ve focused on a single random variable, X.
• We’ve talked about population quantities (e.g., µ and σ2).
• We’ve discussed how to compute sample statistics to estimate population 

quantities, the properties of estimators (e.g., bias and efficiency), and how 
to test hypotheses about the population.

• Things get much more interesting when we consider two or more random 
variables.variables.
– we care about the relationship between variables
– we can use one or more variables to predict a variable of interest, etc.

• We can get a lot of mileage out of studying the conditional expectation of a 
variable of interest (Y) given another variable (or group of variables) X. 
That is, studying E(Y|X).

• Recall that another name for E(Y|X) is the regression function.
• We’ll spend the rest of the semester talking about regression analysis, 

which is a very powerful tool for analyzing economic data.
• Regression analysis is based on E(Y|X).



What is Regression Analysis?
• Regression analysis is a very common statistical/econometric technique
• We use it to measure/explain relationships between economic variables
• Example: casual observation will reveal that more educated individuals 

tend to have higher incomes. 
– regression methods can be used to measure the rate of return of an extra 

year of education
– or, use regression methods to estimate the relationship between income – or, use regression methods to estimate the relationship between income 

and education, gender, labour market experience, etc.
• Example: economic theory tells us that if the price of a good increases, 

individuals will consume less of it.
– that is, demand curves slope down
– but economic theory doesn’t predict how big the change in consumption 

will be for a given price change
– we can use regression analysis to measure how much individuals reduce 

their consumption in response to a price increase (i.e., we can estimate the 
elasticity of demand)



The Regression Model
• Regression is a tool to conveniently learn about conditional means.
• The goal of regression analysis is to explain the value of one 

variable of interest (the dependent variable) as a function of the 
values of other variables (the independent or explanatory 
variables)
– Usually, the dependent variable is denoted Y
– The independent variables are X , X , X etc.– The independent variables are X1, X2, X3 etc.
– Sometimes we say we want to explain “movement” in Yas a function of 

“movement” in the X variables. That is, how much does Y change when the X
variables change? In this context, a better word for “movement” is variation.

• We use an equation (sometimes more than one) to specify the 
relationship between Y and the X variables. 

• This equation is called the regression model:
E(Y|X1,X2,X3) = f(X1, X2, X3)

• Example: Y is income, X1 is years of education, X2 is gender, X3 is 
years of labour market experience, and f is some function ...

• Note: we are not saying that the X variables cause Y



Simple Linear Regression

• The simplest example of a regression model is the case where the 
regression function f is a line, and where there is only one X

E[Y|X] = β0 + β1X
• This specification of the regression function says that the 

dependent variable Y is a linear function of the independent 
variable Xvariable X

• This is just the equation of a line
• We call β0 andβ1 the regression coefficients
• β0 is called the intercept or constant term. It tells us the value of Y

when X is zero
• β1 is the slope coefficient. It measures the amount that Y changes 

for a unit change in X--it is the slope of the line relating X and Y:

sometimes we call β1 the marginal effect of X on Y.

1β=
dX

dY



About Linearity
• There are two kinds of linearity present in the regression model 

Y= β0 + β1X 
from the previous slide.

• This regression function is linear in X.
– counter-example: Y= β0 + β1X2

• This regression function is linear in the coefficients β0 and β1• This regression function is linear in the coefficients β0 and β1

– counter-example: Y= β0 + X β

• In general, neither kind of linearity is necessary.
• However, we will focus our attention mostly on what econometricians call 

the linear regression model. 
• The linear regression model requires linearity in the coefficients, but not

linearity in X.
– When we say “linear regression model” we mean a model that is linear in the 

coefficients.



The Stochastic Error Term
• Econometricians recognize that the regression function is never an 

exact representation of the relationship between dependent and 
independent variables.
– e.g., there is no exact relationship between income (Y) and education, gender, 

etc., because of things like luck

• There is always some variation in Y that cannot be explained by the 
model.model.

• There are many possible reasons: there might be “important” 
explanatory variables that we leave out of the model; we might have 
the wrong functional form (f), variables might be measured with 
error, or maybe there’s just some randomness in outcomes.

• These are all sources of error.  To reflect these kinds of error, we 
include a stochastic (random) error term in the model.

• The error term reflects all the variation in Y that cannot be explained 
by X.

• Usually, we use epsilon (ε) to represent the error term.



More About the Error Term

• Add an error term, and our simple linear regression model is:
Y= β0 + β1X + ε

• It is helpful to think of the model as having two components:
1.a deterministic(non-random) component β0 + β1X 
2.a stochastic(random) component ε

• Basically, we are decomposing Y into the part that we can • Basically, we are decomposing Y into the part that we can 
explain using X (i.e.,  β0 + β1X) and the part that we cannot 
explain using X (i.e., the error ε)

• The right way to think about it: 
β0 + β1X is the conditional mean of Y given X. That is,

Y= E(Y|X) + ε
where E(Y|X) = β0 + β1X 

• Remember “regression function” means E(Y|X)
• This gives us another way to think about errors: ε = Y − 

E(Y|X)
• (draw some pictures)



An example

• Think about starting salaries for new university graduates (Y).
• There is a lot of variation in starting salaries between 

individuals.
• Some of this variation is predictable:

– starting salary depends on university, field of study, industry, 
occupation/title, firm size, etc.occupation/title, firm size, etc.

– Call all of this X
– The predictable part of starting salary goes into the deterministic 

component of the regression: E(Y|X).  
• We don’t need to impose that X enters linearly, but we will require E(Y|X) to be 

linear in the βs.  
• We choose the specific functional form of E(Y|X) when we build the model.

• Much of the variation in starting salary is unpredictable:
– starting salary also depends on luck, nepotism, interview skill, etc.
– We can’t measure these things, so we can’t include them in E(Y|X).
– The unpredictable part ends up in the error term, ε.



Even Simpler Regression

• Suppose we have a linear regression model with one independent 
variable and NO INTERCEPT:

• Suppose also that 
For all i.

i i iY Xβ ε= +
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Minimisation

• The squared Y leading term doesn’t have 

• Min

β̂
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OLS Coefficients are Sample Means

• The estimated coefficient is a weighted average of the Y’s:
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• It is a function of the data (a special kind of sample mean), and so it 
is a statistic.

• It can be used to estimate something we are interested in: the 
population value of 

• Since it is a statistic, it has a sampling distribution that we can 
evaluate for bias and variance.
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Bias

• Pretend X is not random. Remember assumptions from above:

• ( )2 2[ ] 0 [ ]i iE and Eε ε σ= =

i i iY Xβ ε= +

• Substitute into the estimator and take an expectation:
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Variance

•
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Inference

• You have everything you need to do make 
probability statements about OLS regression 
coefficients when there’s just 1 variable (and no 
intercept).

• It is basically the same when you have more 
variables:
– The OLS coefficient is a weighted sum of Y’s
– It is a statistic with a sampling distribution
– The sampling distribution depends on the data, and 

you can thus use the data to make statements about 
the population parameter.



Extended Notation
• We need to extend our notation of the regression function to reflect the number 

of observations.
• As usual, we’ll work with an iid random sample of n observations.
• If we use the subscript i to indicate a particular observation in our sample, our 

regression function with one independent variable is:

• So really we have n equations (one for each observation):

niXY iii ,...,2,1for     10 =++= εββ
• So really we have n equations (one for each observation):

Notice that the coefficients β0 and β1 are the same in each equation.  The only 
thing that varies across equations is the data (Yi, Xi) and the error εi.
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Extending the Notation Further

• If we have more (say k) independent variables, then we need to 
extend our notation further.

• We could use a different letter for each variable (i.e., X, Z, W, etc.) 
but instead we usually just introduce another subscript on the X. 

• So now we have two subscripts: one for the variable number (first 
subscript) and one for the observation number (second subscript). subscript) and one for the observation number (second subscript). 

• What do the regression coefficients measure now? They are partial 
derivatives. That is,

So, β1 measures the effect on Yi of a one unit increase in X1i
holding all the other independent variables X2i , X3i , ... , Xki
constant.
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What is Known, What is Unknown, 
and What is Assumed

• It is useful to summarize what is known, what is unknown, and 
what is hypothesized.

• Known: Yi andX1i , X2i , ... , Xki (the data)
• Unknown: β0 , β1 , β2 , ... , βk and εi (the coefficients and 

errors)errors)
• Hypothesized: the form of the regression function, e.g., 

E(Yi | Xi) = β0 + β1X1i + β2X2i + βkXki

• We use the observed data to learn about the unknowns 
(coefficients and errors), and then we can test the hypothesized 
form of the regression function.

• We can hope to learn a lot about the βs because they are the 
same for each observation.

• We can’t hope to learn much about the εi because there is only 
one observation on each of them.



Estimated Regression Coefficients

• Think of the regression function we’ve developed to this point as 
the population regression function.

• As always in econometrics, we collect a sample of data to learn 
about the population. 

• We don’t know the (population) regression coefficients (β), so we 
estimate them.  We’ll discuss the details of how to do this next day.estimate them.  We’ll discuss the details of how to do this next day.

• For now, we’ll just introduce a notation for the estimated 
coefficients.  The estimated coefficients are:

• The estimated coefficients are sample statistics that we can 
compute from our data.

• Because they are sample statistics, they are RVs, have sampling 
distributions, etc., just like all sample statistics.

kββββ ˆ,...,ˆ,ˆ,ˆ
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Predicted Values and Residuals
• Once we have estimated the regression coefficients, we can calculate the predicted 

value of Yi. 
• It is a sample estimate of the conditional expectation of Yi given all the Xs:

• It is our “best guess” of the value of Yi given the value of the Xs.
• Predicted values lie on the estimated regression line.
• Of course, Y and its predicted value are rarely equal.

kikiii XXXY ββββ ˆˆˆˆˆ
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• Of course, Yi and its predicted value are rarely equal.
• We call the difference between Yi and its predicted value the residual ei:

• Residuals are the sample counterpart to the (unknown) errors 
εi = Yi – E(Yi|Xi).

• We can write the estimated regression function as:

• (draw a picture – true & estimated regression lines, residuals, and errors)
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What we do with regression 
analysis

• We use regression models for lots of different things.
• Sometimes we care most about predicted values & use the 

estimated regression to predict (forecast) things.
– e.g., estimate a regression of stock prices (Yi) on “leading 

indicators” (unemployment rate, cpi, etc.) to forecast future stock 
prices.prices.

• Sometimes we care most about the coefficient values & use 
the estimated regression to develop policy, etc.
– e.g., estimate a regression of labour earnings on years of 

education, experience, gender, etc. (“the kitchen sink”)
– the estimated coefficient on years of education gives an estimate 

of the rate of return to an extra year of education ceteris paribus
– the estimated coefficient on gender gives an estimate of the 

male-female wage differential ceteris paribus(see lecture 1)
– both of these are important for designing government policy 


