Statistics Review Part 3

Hypothesis Tests,
Regression



The Importance of Sampling
Distributions

Why all the fuss about sampling distributions?
— Because they are fundamentahygothesistesting.

Remember that our goal is to learn about the population
distribution.

— In practice, we are interested in things likegbpulation mean,
population variance, some population conditionahmetc

— We estimate these quantities in a random samids taom the
population.

— This is done with sample estimators like the semmean, the sample
variance, or some sample conditional mean.
Knowing the sampling distribution of our sample estimator
(e.g., the sampling distribution of the sample mean), gives us a
way to assess whether particular values of population
guantities (e.g., the population mean) are likely or unlikely.

E.g., suppose we calculate a sample mean of 5. If the true
populatlon mean is 6, iIs 5 a “likely” or “unlikely” occurrence?



Hypothesis Testing

We use hypothesis tests to evaluate claims like:
— the population mean is 5

— the population variance is 16

— some population conditional mean is 3

When we know the sampling distribution of a san
statistic, we can evaluate whether its observegevial
the sample IS “likely’when the above claim istrue.

We formalize this with twdnypotheses.

For now, we’ll focus on the case of hypothesesiabo
the population mean, but we can generalize the
approach tany population quantity.




Null and alternative hypotheses

e Suppose we're interested in evaluating a specific claim about
the population mean. For instance:

— “the population mean is 5”
— “the population mean is positive”

 We call the claim that we want to evaluatenull
hypothesis, and denote H,,.
— Hp:p=5
— Hy:pn>0
 We compare the null hypothesis to #iter native hypothesis,
which holdswhen the null isfalse. We will denote iH,.
— H;:p#5 (a“two-sided” alternative hypothesis)
— H,;: n<0 (a“one-sided” alternative hypothesis)



How tests about the population

mean work

Step 1: Specify the null and alternative hypotheses.
Step 2a: Compute the sample mean and variance

Step 2b: Use the estimates to construct a new statistied call
test statistic, that has &nown sampling distribution when
the null hypothesisistrue (“under the null”)
— the sampling distribution of the test statistic elegs on thi
sampling distribution of the sample mean and vaean
Step 3: Evaluate whether the calculated value of the test
statistic is “likely” when the null hypothesis is true.
— Wergect the null hypothesis if the value of the test statiss
“unlikely”
— Wedo not rgect the null hypothesis if the value of the test
statistic is “likely”
— (Note: thanks to Popper, we never “accept” thémypothesis)



Example: the t-test

Suppose we have a random sample atbservations from a
N(u,02) distribution.
Suppose we’re interested in testing the null hypothesis:
Ho =y
against the alternative hypothe
Hyip# po
A natural place to start is by estimating the sample mgan,
We know thatf the null hypothesisistrue, then the

sampling distribution ofX is normal with meapand
variances?/n.

— We sayX ~ N(,,6%n)under the null
— (draw a picture)



Example: the t-test (continued)

« BecauseX ~ N,02/n)under the null, we know that

7=2"H _ N(01) under thenull

J/\/ﬁ

(recall we can transform any normally distributed RV to havaradard normal
distribution by subtracting off its mean and dividing by its standard daw)

e |f we knews?, we could comput&, and this would be our test
statistic:

— If Zis “far” from zero, it is unlikely that the null hypothesisngd, and we
would reject it.

— If Zis “close” to zero, it is likely that the null hypothesis traed we would
not reject it.

— WhyZ? Because we can look up its critical values in a table.
* Problems with this approach:

— we don’t knows?

— how do we quantify “close” and “far”?



Example: the t-test (continued)

Since we don’t knows?, why not estimate it? We know that
the sample varian® is an unbiased estimator of

Unfortunately,
Q= X" Ho doesot havea N (0,1) distributonunder thaull

s/v/n
Some facts about sampling from eu,02):
— Fact 1. G- 1)/ 6% ~ %4
— Fact 2.5 is independent ofg

We know already that £ ~ N(0,1) andV ~ y%,andZ andW
are independent, thep

We can put all this together to compute a test statistic that
has a sampling distribution witim-1 degrees of freedom.



Example: the t-test (concluded)

e Putting together the things we know, under the null :

£ _ (X‘ﬂo)/(alﬁ) .
Mn-9102li0-1) V-0 10%ifn-0 ™

* This is a bit of a mess, and it still involves an unknown

guantity ¢2). But we can simplify it with a bit of algeb
T (f—yo)/(a/«m) _ (Y—yo)/(a/xm)

W(n—l)szlaz_/(n—l) Vs?/g?

_ (X_:Uo)/(al‘/ﬁ): (X_:Uo)q — (X_:Uo)

slo s(a/«m) s/+/n
* Notice that this test statistic has two crucial properties:
— It doesn’t contain any unknowns (So we can comjute

— we know Iits sampling distribution (so we can look table and
see if a particular value is “likely” or “unlikelytinder the null)

- tn—l



This is how ALL hypothesis testing

Works

1. We form the null and alternative hypotheses wet
care about.

2. Then we use the sample data to construct a test
statistic that has a known sampling distributiorewh

the null hypothesis is tri

3. Then we decide whether or not to reject the onill

the basis of whether the value of the test statibat

we observe is “likely” or “unlikely” under the null

hypothesis.

 Theright way to think about hypothesis tests:

— A hypothesis test isralle for using the data to decide
whether or not to regect the null hypothesis.




A note about Normality

When we derived the sampling distribution for batatistic, we relied on some
facts that arenly true when sampling from a normal distribution.

— This gives us a normal sampling distribution foe sample mean under the null,
independence of the sample mean and variancehardhi-square result f&?.

What do we do if we're not sampling from a normal distribution? (gual case)
— Usually, we rely on aasymptotic approximation.

As the sample size gets “big” (technically rasx), thens” gets very close t62
(it's consistent). Thus olT statistic gets very close to oZ statistic

>z_:uO >_(_/'10:Z

s/vn  oldn

Furthermore, we know from the central limit theorem that-aso, under the null
hypothesis the sampling distributionbfs approximately N(0,1)
NO MATTER WHAT THE POPULATION DISTRIBUTION IS

So if our sample is “big enoughh@w big?) we can compute thiestatistic as
usual, and use values from the standard normal distribution to decideswaet
specific value is “likely” or “unlikely” under the null hypothesis.

asn - oo, T =




How do we know Iif a particular
value of the test statistic Is “likely”?

When we know the sampling distribution of the test statistic,
we know the probability that the value of the test statistic will
fall in a given intervaWwhen the null hypothesisistrue.
— Just the area under the pdf of the test statistic’s samplimdpaign.
— If Tis our test statistic, for anywe can findL,U such that
PrfL<T<U]=1-a whenH,is true
SO0 we can define a range of “acceptable” values of th

statistic.
— e.g., we can define an intervalJ] such thaif the null hypothesisis

true, the test statistic falls in the interval with probabilit9® (=0.05)
— thatis, if the null is true and we draw 100 random sampleseshstatistic

will fall in this interval about 95 times.
— If we observe a value of the test statistic outside thisvaltene know it is
“unlikely” that the null is true (e.qg., it would only happen in 5% ofd@am

samples) and we can therefore comfortably reject the null.
* We callL andU critical values at the 100a% significance
level, and we can look them up in a table.



Making mistakes: Type | and Type

Il errors

When testing a hypothesis, therals/aysthe possibility that
we make a mistake.

There are two kinds of mistakes:

— Typel error: we erroneously reject the null when it’s true.

— Typell error: we fail to reject the null when it's false

We call the probability of making a Type | error-
significance level of the test, and denoteuit

We useB to denote the probability of making a Type Il error.

— We call 1 3 thepower of a test. It is the probability that we correctly
reject the null when it is false.

We usually choose a significance lewehat we're
comfortable with (0.05 is most common), and look for a
powerful test (smalb)

There’s a tradeoff: asgets smallery must get bigger.
(draw a picture)



An example

Suppose you survey 121 randomly selected Canadians about the number of times
they went to the movies last year.

Using the survey data, you calculateX = 75 s?> =75

You want to test the hypothesis that the population mean of movie atbendaD:
Ho:pn=9 H;:p#9

You figure movie attendance is probably normally distributed in the populat

and construct thT statistic

T Xty 75-9

s/+/n B J75/4121

You know thafl ~t,,, if Hyis true. In a table of critical values for the,
distribution, you finél that the critical value at the 10% level ghisicance ¢ =
0.1) is 1.658; at the 5% level of significanas=(0.05) the critical value is 1.980.

This means that i, is true,
Pr[-1.658< T < 1.658] = 0.90
Pr[-1.980< T <1.980] = 0.95

Thereforet = -1.90526 is quite unlikely. You would rejddf at the 10% level of
significance, but would not reject it at the 5% level of signifieanc

=-1.90526




p-values

There’s another (related) way to decide whetherobito reject the null
hypothesis.

Suppose we construct a test statistic callatiat has a known sampling
distribution wherH, is true. Suppose that in our sample, the value we
compute for the test statisticvis

We can ask “what is the probability of observingadue of the statistieV
as big aw when the null hypothesisistrue?” i.e..

— Prl-w<wW<w]=1-p* (for a two-sided alternative)
— Prw<w]=1-p* (for a one-sided alternative)
The probabilityp* is called gp-value. It is a tail probability of the

sampling distribution o¥V. It is the probability of observing a value\f
that is more extreme (unusual) than

It is also the probability of making a type | arowe reject the null.
If the p-value is “small” (sag 0.05) we can confidently rejekt,.

Computers routinely report p-values for commondifipsis tests, so you
can save yourself some time by looking at the prvahther than Iooklng
up critical values in a table.

The p-value for the example above is between 5861880



Interval Estimation

We're done talking about hypothesis testing for now — but it
will come up again soon in the context of linear regression.

We talked earlier about estimators — statistics that we use to
estimate a population quantity.

The examples we saw (the sample mean, sample variance,
sample covariance, etc.) are all capoint estimator s
because they give us a single value for the population quantity.

An alternative to a point estimator is ismer val estimator .

This is an interval that contains a population quantity with a
known probability.

An interval estimator of a population guantipakes the form
[L,U], whereL andU are functions of the data (they're
statistics).

We use the interval estimatdr,{J] to make statements like:
PriL<Q<U]=1-a (look familiar yet?)



Example: Confidence Interval for
the Population Mean

A 95% confidence interval for the population meas an
interval [L,U] such that:
PriL <p<U]=0.95

How do we find the interval] U] such that this is true?

An illustrative (but impossible) wa

1. Pick a random value, and construct thé statistic to test
Hoiu=pg vS. Hytp#py.

2. If we rejectH,, thenp, isnot in the interval. If we do not reject
H,, theny, isin the interval.

3. Pick another valug, and repeat.
4. Do this for all possible values pf(this is why it's impossible).

Thankfully, there’s an easier way.



The 95% confidence interval for p

The easier way is to make use of the sampling distribution of
our T statistic. We know that when sampling from the normal
distribution, T = X—-u

t
s/ «/ﬁ .

So we caralwayslook up the critical valug,_, ,,, such that:
Pri-tha <T<t ,]=1-a

For a 95% confidence interval, we have
Pri-t10025 < T<1,10025] =0.95

Now we just plug in the formula for odrstatistic, and
rearrange things as necessary (next slide)




Confidence Interval Algebra
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The Last Word on Confidence
Intervals (for now)

So now we know how to build a 95% confidence nvééfor
when sampling from the normal distribution.

It's easy to generalize this to 90% or 99% etaficence intervals
— Just change the critical value you use.

When we’re not comfortable assuming that we’re@arg from
the normal distribution, we can replace criticalues from thet
distribution with critical values from the standarormal
distribution if the sample is “big enough”

We can build similar intervals for other populatiguantities — the
Idea is always the same. We just need a sampiugausually a
test statistic) whose sampling distribution we knowe can use it
to build the Iinterval.

Typically, a confidence interval for a populatignantityQ looks
like

[L,U] = [g - somethingq + something
whereq is a point estimator dp, andsomethinglepends on the
variance of the sampling distribution af



Moving on

To this point we’'ve focused on a single randomalde, X.
We've talked about population quantities (eugands?).

We've discussed how to compute sample statistiestimate population
quantities, the properties of estimators (e.gs aiad efficiency), and how
to test hypotheses about the population.

Things get much more interesting when we congigleror more random
variables

— we care about the relationship between variables
— We can use one or more variables to predict a variable of itei®s

We can get a lot of mileage out of studying theditbonal expectation of a
variable of interestY) given another variable (or group of variabl¥s)
That is, studying E(|X).

Recall that another name for\BK) is theregression function.

We’'ll spend the rest of the semester talking albegtession analysis,
which is a very powerful tool for analyzing econordata.

Regression analysis is based oiY [X].



What Is Regression Analysis?

Regression analysis is a very common statisticaiemetric technique
We use it to measure/explain relationships betvea@momic variables
Example: casual observation will reveal that meatacated individuals
tend to have higher incomes.

— regression methods can be useohéasure therate of return of an extra
year of education

— or, use regression methodsestimate the relationship between incom
and education, gender, labour market experience, etc.

Example: economic theory tells us that if the @it a good increases,
individuals will consume less of it.
— thatis, demand curves slope down
— but economic theory doesn’t predntiw big the change in consumption
will be for a given price change

— We can use regression analysisneasur e how much individuals reduce
their consumption in response to a price increase (i.e., we tiaatesthe
elasticity of demand)



The Regression Model

Regression is a tool to conveniently learn almmmditional means

The goal of regression analysis issiplain the value of one
variable of interest (thdependent variable) as a function of the
values of other variables (thhedependent or explanatory
variables)

— Usually, the dependent variable is dendted

— The independent variables &X;, X,, X; etc

— Sometimes we say we want to explain “movement’ @ a function of
“movement” in theX variables. That is, how much doéshange when thx
variables change? In this context, a better word for “movemendr istion.

We use an equation (sometimes more than onegtfghe
relationship betweel and theX variables.

This equation is called thregression modd!:
E(Y[X, X0 %) = 1(Xy, %5, X5)

Example:Y is income X, is years of educatiotX, is genderX; is
years of labour market experience, &glsome function ...

Note: we are not saying that tKevariablescause Y



Simple Linear Regression

The simplest example of a regression model icése where the

regression functiohis a line, and where there is only oXie
E[Y[X] = fo + X

This specification of the regression function st the

dependent variablgis a linear function of the independent

variableX

This Is just the equation of a line
We callp, andg, the regressionoefficients

pols called thanter cept or constant term. It tells us the value of
whenX s zero

p11s thesope coefficient. It measures the amount théthanges
for a unit change iX--it is the slope of the line relatingandY:

dy
ax =5
sometimes we cafl; themarginal effect of Xon'Y.



About Linearity

There ar@dwo kinds of linearity present in the regression model

- CY=[t X
from the previous slide.

This regression function Igear in X.
— counter-example: ¥ S, + f,X?

This regression function linear in the coefficients g, andg;
— counter-example: ¥ g, + X/

In general, neither kind of linearity is necessary

However, we will focus our attention mostly on wieaonometricians call
thelinear regression model.

The linear regression modaquir eslinearity in the coefficients, burot
linearity in X.

— When we say “linear regression model” we mean a model thia¢as in the
coefficients



The Stochastic Error Term

Econometricians recognize that the regressiontiomes never an
exact representation of the relationship between depeéraleh
Independent variables.

— e.g., there is no exact relationship between incofnarn(d education, gender,
etc., because of things like luck
There isalways some variation irY that cannot be explained by the
model

There are many possible reasons: there mightrbpditant”
explanatory variables that we leave out of the made might have
the wrong functional formf), variables might be measured with
error, or maybe there’s just some randomness ICOOES.

These are all sources@fror. To reflect these kinds of error, we
Include astochastic (random) error term in the model.

The error term reflects all the variationYrhat cannot be explained
by X.

Usually, we use epsilor)(to represent the error term.



More About the Error Term

Add an error term, and our simple linear regression model is:
Y=pot+ piX +e
It is helpful to think of the model as having two components:
1.adeterministiqnon-random) componefit + £, X
2.astochastiqrandom) component
Basically, we are decomposiY into the part that we ce

explain usingX (i.e., g, + f;X) and the part that we cannot
explain usingX (i.e., the errok)

Theright way to think about it:

o+ pXIs theconditional mean of Y given X. That is,
Y=E{|X + ¢

where E(Y|X) =p,+ X

Remember “regression functionieans E(Y|X)

This gives us another way to think about errers:.Y —

E(Y]X)

(draw some pictures)



An example

Think about starting salaries for new university graduafes (

There isalot of variation in starting salaries between
iIndividuals.

Some of this variation is predictable:

— starting salary depends on university, field of study, industry,
occupation/title, firm size, el

— Call all of thisX

— The predictable part of starting salary goes into the determinist
component of the regression:YiX).

* We don’'t need to impose thdtenters linearly, but we will require EK) to be
linear in theps.

» We choose the speciffanctional form of E(Y]X) when we build the model.
Much of the variation in starting salary is unpredictable:
— starting salary also depends on luck, nepotism, interview skill, et

— We can’t measure these things, so we can't include thenYX)E(
— The unpredictable part ends up in the error term,



Even Simpler Regression

Suppose we have a linear regression model withratependent
variable and NO INTERCEPT: Y=BX+&

Suppose also that  |E[£] =0 and B(g )] = o?
For alli.

Now, define an estimator as the numger  thaimises the sum
of the squared prediction error

e=Y-5X

2

Min 6= (Y-A%) =2 V-3 (28 ¥ (5 A

ﬁ [ [ I = =1 =1




e Min

Minimisation

 The squared leading term doesn’t havqé

2

n [ 2(Eax) 2 (Ax)
2221:(x, )+2/32(
> (XY)+BY(%?)
 First-Order Condition Al_n1 nl_1
AR () =2 (¥ %)o
CYXY
,8= in:1
(%)

’)=0

0




OLS Coefficients are Sample Means

The estimated coefficient is a weighted averagheYf's:

ilel n

B="2—=>wY

n

(x)

1

X.

W

It is a function of the data (a special kind afinpde mean), and so it
IS astatistic

It can be used to estimate something we are stetan: the
population value ofz

Since it Is a statistic, it has a sampling disttibn that we can
evaluate for bias and variance.



Bias

 PretendX is not random. Remember assumptions from above:
Y=6X*¢
+ |E[g] =0 and E(g)] =0

e Substitute intc_) the est_imatg)r and take an _exn'eatat

XY | X x(BX%+e)
E|B|=E 22— |= g2
20| X))
Sx(X)] | Sxe
- pE| = vE|E | pr0=p
(x| 2()




Variance

n
Xi&
=1

V| B|= E{(,[A?— E[/}]ﬂ: = i(xiz) i (Zn:(iz)jz EH.Z”; * T}

SE[ X X+ X XE£,+.+ X Xe £, X XE£E ]




Inference

* You have everything you need to do make
probability statements about OLS regression
coefficients when there’s just 1 variable (and no
Intercept).

 |tis basically the same when you have more
variables:
— The OLS coefficient is a weighted sum of Y’s
— It is a statistic with a sampling distribution

— The sampling distribution depends on the data, and
you can thus use the data to make statements about
the population parameter.



Extended Notation

We need to extend our notation of the regression function to reflectithiger
of observations.

As usual, we’ll work with an iid random samplerobbservations.

If we use the subscripto indicate a particular observation in our sample, our
regression function with one independent variable is:

Y. =6,+BX +¢& fori=12....n
So really we havn equations (one for each observati

Y, =5, +BX +&
Y, =5+ B X, +&,

Yn :/80 +/81Xn +£n
Notice that the coefficieni, andf, arethe samein each equation. The only
thing that varies across equations is the dgta() and the erros;.




Extending the Notation Further

If we have more (sak) independent variables, then we need to
extend our notation further.

We could use a different letter for each varigbk, X, Z, W.etc.)
but instead we usually just introduce another suson thexX.

So now we have two subscripts: one for the vagiabimber (first
subscript) and one for the observation number (s®soabscript)

Yi :,80 +131X]j +182X2i +,33X3i +"'+,3kxki t&
What do the regression coefficients measure novwey arepartial
derivatives. That is,

_oy,  , _ oY )
:81 ) aXJJ '82 aXZi ng ain
So,5; measures the effect dfhof a one unit increase K,

holding all the other independent variables X, , X5, ... , X,
constant.




What is Known, What is Unknown,

and What i1s Assumed

It is useful to summarize what is known, what is unknown, and
what is hypothesized.

Known: Y; andX;;, X,, ... , %; (the data)

Unknown: 5,, 51, 5>, ... ,f andg; (the coefficients and

errors

Hypothesized: the form of the regression function, e.g.,
ECY [ X)) = B0+ BrXai + BXKo + BiX

We use the observed data to learn about the unknowns

(coefficients and errors), and then we can test the hypothesized
form of the regression function.

We can hope to learn a lot about fisdbecause they are the
same for each observation.

We can’t hope to learn much about thbecause there is only
one observation on each of them.



Estimated Regression Coefficients

Think of the regression function we’'ve developedHis point as
the population regression function.

As always in econometrics, we collect a sampldaté to learn
about the population.

We don’t know the (population) regression coeéfids [5), so we
estimate them. We’ll discuss the details of howlddhis next da

For now, we’ll just introduce a notation for th&tienated
coefficients. The estiAmatedAcoefﬁgients are:

By B Bor-- 3,

The estimated coefficients are sample statisiaswe can
compute from our data.

Because they are sample statistics, they are Ral® sampling
distributions, etc., just like all sample statistic



Predicted Values and Residuals

Once we have estimated the regression coefficients, we lcaata thepredicted

valueof ;.

It is a sample estimate of the conditional expectatior) given all theXs:

YAi =L+ BXy + B, Xyt [ X

It is our “best guess” of the value ¥f given the value of thiXs.
Predicted values lie on the estimated regression line.

Of courseY; and its predicted value are rarely ec

We call the difference betweéhand its predicted value tmesidual e

§=Y-Y

Residuals are the sample counterpart

o the (unknown) errors

& = Y, —E(Yi[X).
We can write thestimated regression function as:

Y, =5, + B X, + B X,

+"'+Iékxki t€

(draw a picture — true & estimated regression lines, residaradserrors)



What we do with regression
analysis

We use regression models for lots of different things.
Sometimes we care most about predicted values & use the
estimated regression to predict (forecast) things.

— e.g., estimate a regression of stock priggsoh “leading
indicators” (unemployment rate, cpi, etc.) to fastcfuture stock
prices

Sometimes we care most about the coefficient values & use
the estimated regression to develop policy, etc.

— e.g., estimate a regression of labour earningsears of
education, experience, gender, etc. (“the kitcheki's

— the estimated coefficient on years of educatisegan estimate
of the rate of return to an extra year of educateteris paribus

— the estimated coefficient on gender gives an eséirof the
male-female wage differentiakteris paribugsee lecture 1)

— both of these are important for designing govemtrpelicy



